Aggregate
BigQuery
STDDEV_POP
Menghitung standar deviasi populasi dari nilai numerik. Menggunakan formula pembagi N (bukan N-1), cocok ketika data merepresentasikan seluruh populasi.
Tipe hasil:
FLOAT64Diperbarui: 7 Jan 2026Syntax
SQL
STDDEV_POP(expression)Parameter
expressionnumericwajib
Kolom atau ekspresi numerik yang akan dihitung standar deviasi populasinya
Contoh Penggunaan
Population vs Sample Standard Deviation
SQL
1 SELECT 2 STDDEV_POP(score) as population_stddev, 3 STDDEV_SAMP(score) as sample_stddev, 4 STDDEV(score) as stddev_alias 5 FROM `project.dataset.exam_scores`;
Membandingkan population dan sample standard deviation.
Hasil
| population_stddev | sample_stddev | stddev_alias |
|---|---|---|
| 12.5 | 12.8 | 12.8 |
STDDEV_POP untuk Seluruh Data Karyawan
SQL
1 SELECT 2 department, 3 AVG(salary) as avg_salary, 4 STDDEV_POP(salary) as salary_stddev_pop 5 FROM `project.dataset.all_employees` 6 GROUP BY department 7 ORDER BY salary_stddev_pop DESC;
Standar deviasi populasi gaji per departemen (semua karyawan).
Hasil
| department | avg_salary | salary_stddev_pop |
|---|---|---|
| Engineering | 18000000 | 5200000 |
| Sales | 12000000 | 4500000 |
| Operations | 9500000 | 1800000 |
Variabilitas Sensor Readings
SQL
1 SELECT 2 sensor_id, 3 AVG(reading) as avg_reading, 4 STDDEV_POP(reading) as reading_variability, 5 MIN(reading) as min_reading, 6 MAX(reading) as max_reading 7 FROM `project.dataset.sensor_data` 8 WHERE DATE(timestamp) = CURRENT_DATE() 9 GROUP BY sensor_id 10 ORDER BY reading_variability DESC 11 LIMIT 10;
Menganalisis variabilitas sensor readings (data lengkap).
Hasil
| sensor_id | avg_reading | reading_variability | min_reading | max_reading |
|---|---|---|---|---|
| S001 | 25.5 | 3.2 | 18.0 | 32.0 |
| S002 | 22.1 | 1.8 | 19.5 | 26.0 |