Aggregate

STDDEV_POP

BigQueryBigQuery

Menghitung standar deviasi populasi dari nilai numerik. Menggunakan formula pembagi N (bukan N-1), cocok ketika data merepresentasikan seluruh populasi.

Tipe hasil: FLOAT64Diperbarui: 7 Jan 2026

Syntax

SQL
STDDEV_POP(expression)

Parameter

expressionnumericwajib

Kolom atau ekspresi numerik yang akan dihitung standar deviasi populasinya

Contoh Penggunaan

Population vs Sample Standard Deviation

SQL
1SELECT
2 STDDEV_POP(score) as population_stddev,
3 STDDEV_SAMP(score) as sample_stddev,
4 STDDEV(score) as stddev_alias
5FROM `project.dataset.exam_scores`;

Membandingkan population dan sample standard deviation.

Hasil
population_stddevsample_stddevstddev_alias
12.512.812.8

STDDEV_POP untuk Seluruh Data Karyawan

SQL
1SELECT
2 department,
3 AVG(salary) as avg_salary,
4 STDDEV_POP(salary) as salary_stddev_pop
5FROM `project.dataset.all_employees`
6GROUP BY department
7ORDER BY salary_stddev_pop DESC;

Standar deviasi populasi gaji per departemen (semua karyawan).

Hasil
departmentavg_salarysalary_stddev_pop
Engineering180000005200000
Sales120000004500000
Operations95000001800000

Variabilitas Sensor Readings

SQL
1SELECT
2 sensor_id,
3 AVG(reading) as avg_reading,
4 STDDEV_POP(reading) as reading_variability,
5 MIN(reading) as min_reading,
6 MAX(reading) as max_reading
7FROM `project.dataset.sensor_data`
8WHERE DATE(timestamp) = CURRENT_DATE()
9GROUP BY sensor_id
10ORDER BY reading_variability DESC
11LIMIT 10;

Menganalisis variabilitas sensor readings (data lengkap).

Hasil
sensor_idavg_readingreading_variabilitymin_readingmax_reading
S00125.53.218.032.0
S00222.11.819.526.0