Aggregate
BigQuery
STDDEV
Menghitung standar deviasi sampel dari nilai numerik. Mengukur seberapa tersebar data dari nilai rata-ratanya. Alias untuk STDDEV_SAMP.
Tipe hasil:
FLOAT64Diperbarui: 7 Jan 2026Syntax
SQL
STDDEV(expression)Parameter
expressionnumericwajib
Kolom atau ekspresi numerik yang akan dihitung standar deviasinya
Contoh Penggunaan
Standar Deviasi Harga
SQL
1 SELECT 2 product_category, 3 AVG(price) as avg_price, 4 STDDEV(price) as price_stddev, 5 MIN(price) as min_price, 6 MAX(price) as max_price 7 FROM `project.dataset.products` 8 GROUP BY product_category;
Menganalisis variasi harga per kategori produk.
Hasil
| product_category | avg_price | price_stddev | min_price | max_price |
|---|---|---|---|---|
| Electronics | 2500000 | 1850000 | 99000 | 25000000 |
| Fashion | 450000 | 320000 | 50000 | 5000000 |
Variasi Response Time
SQL
1 SELECT 2 endpoint, 3 AVG(response_time_ms) as avg_response, 4 STDDEV(response_time_ms) as stddev_response, 5 STDDEV(response_time_ms) / AVG(response_time_ms) as coefficient_of_variation 6 FROM `project.dataset.api_logs` 7 WHERE DATE(timestamp) = CURRENT_DATE() 8 GROUP BY endpoint 9 ORDER BY coefficient_of_variation DESC;
Mengidentifikasi endpoint dengan response time tidak stabil.
Hasil
| endpoint | avg_response | stddev_response | coefficient_of_variation |
|---|---|---|---|
| /api/search | 250 | 450 | 1.80 |
| /api/user | 50 | 25 | 0.50 |
| /api/health | 10 | 2 | 0.20 |
Salary Distribution Analysis
SQL
1 SELECT 2 department, 3 COUNT(*) as employee_count, 4 AVG(salary) as avg_salary, 5 STDDEV(salary) as salary_stddev, 6 STDDEV(salary) / AVG(salary) * 100 as variability_pct 7 FROM `project.dataset.employees` 8 GROUP BY department 9 HAVING COUNT(*) >= 5 10 ORDER BY variability_pct DESC;
Menganalisis kesetaraan gaji per departemen.
Hasil
| department | employee_count | avg_salary | salary_stddev | variability_pct |
|---|---|---|---|---|
| Sales | 45 | 12000000 | 4800000 | 40.0 |
| Engineering | 62 | 18000000 | 5400000 | 30.0 |
| Operations | 38 | 9500000 | 1900000 | 20.0 |