AI

AI_EMBED_TEXT_768

SnowflakeSnowflake

Menghasilkan vector embedding 768 dimensi dari teks untuk semantic search.

Tipe hasil: VECTOR(FLOAT, 768)Diperbarui: 6 Jan 2026

Syntax

SQL
SNOWFLAKE.CORTEX.EMBED_TEXT_768(model, text)

Parameter

modelVARCHARwajib

Model embedding: 'e5-base-v2', 'snowflake-arctic-embed-m'

textVARCHARwajib

Teks untuk di-embed

Contoh Penggunaan

Create Embeddings

SQL
1SELECT
2 document_id,
3 SNOWFLAKE.CORTEX.EMBED_TEXT_768('e5-base-v2', document_text) as embedding
4FROM documents;

Generate embeddings untuk semantic search.

Semantic Search

SQL
1WITH query_embedding AS (
2 SELECT SNOWFLAKE.CORTEX.EMBED_TEXT_768('e5-base-v2', 'machine learning tutorial') as vec
3)
4SELECT
5 d.title,
6 VECTOR_COSINE_SIMILARITY(d.embedding, q.vec) as similarity
7FROM documents d, query_embedding q
8ORDER BY similarity DESC
9LIMIT 10;

Semantic search menggunakan embeddings.